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A Regression Design Approach to Optimal and

Robust Spacing Selection

By R. L. Eubank

Short title: Spacing Selection

Summary. The problem of location and/or scale parameter estimation

using the asymptotically best linear unbiased estimator based on sample

quantiles is considered. The problem of optimal spacing selection for

these estimators is shown to be equivalent to the problem of regression

design for time series with Brownian motion or Brownian bridge covariance

structures and a particular variable knot spline approximation problem.

This equivalence is employed, in conjunction with a regression framework,

to investigate the asymptotic properties of certain spacing selection

schemes. In particular, an asymptotic alternative is developed to a

robust estimation procedure suggested by Chan and Rhodin (1980).,

1. Introduction. In a location and scale parameter model it

is assumed that a random sample Xl,...,XN is obtained from a distribu-

tion of the form

F(x) = F ( -M)

where F is a known distributional form and V and a are,respectively, a
0

location and scale parameter. Usually 1 and/or a are unknown and must

be estimated from the data. In this paper, the properties of the asymp-

totically best linear unbiased estimators (ABLUE's) of u and a based

on n < N sample quantiles will be investigated.
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The ABLUE is an easily computed estimator which derives from the

asymptotic distribution of the sample quantiles and was first suggested

by Mosteller (1946). Further properties and computational formulas

were latter derived by Ogawa (1951). In particular, Ocawa obtained

explicit expressions for the asymptotic relative efficiency (ARE) of

the ABLUE with respect to the Cramer-Rao lower variance bound for

unbiased parameter estimation. The ABLUE has also received attention

in the context of robust estimation due to the work of Chan and

Rhodin (1980).

Define the sample quantile function, Q, by

Q(u) = X< U < j , j - 1 .... N, (1.1)(j), N - N

where X(j) denotes the jth sample order statistic. Then, for any set

of real numbers0 < u 1 < ... < u < 1, the ABLUE's of u and a will have

the form n b(ui)Q(u i ) (c.f. Ogawa (1951) or Eubank (1979) for explicit
i=1 i

expressions for the b(u.) in the various estimation situations). Since1

the ABLUE uses a subsample of n < N of the sample quantiles or order

statistics, the quantiles which are utilized in the estimator, or equi-

valently their spacing, ul,... ,un, must be chosen appropriately. The

problem of optimally selecting the ui, i=l,...,n, has classically been

termed the optimal spacing problem and has been addressed by Bloch (1966),

Balmer, Boulton and Sack (1974), Chan (1970), Chernoff (1971), Eisenberger

and Posner (1965), Gupta and Gnanadesikan (1966), Hassanein (1968, 1969a,

1969b, 1971, 1972, 1977), Kulldorf (1963), Kulldorf and Vannman (1973),

Rhodin (1976), Sarhan and Greenberg (1958, 1962) and Sarndal (1962, 1964).

The usual approach to the optimal spacing problem has I een to attempt

to find a spacing which corresponds to the maximum value for one of the
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ARE expressions given by Ogawa. Whereas this is usually a straight-

forward, albeit tedious, numerical problem in the event of a single

unknown parameter, the case when both parameters are unknown usually

proves to be both analytically as well as numerically intractable.

This latter fact has led to the use of "suboptimal" spacing selection

schemes such as the selection of a spacing which maximizes the sum of

the two ARE's of the estimators or a spacina which minimizes the sum of

the estimators' variances. This type of approach has been employed by

Eisenberger and Posner (1965) and Hassanein (1969a, 1969b, 1977).

In this paper the asymptotic (as n + =) properties of optimal as

well as suboptimal spacing selection schemes are derived and then

utilized to obtain an analytic approach to robust estimation problems

such as that considered by Chan and Rhodin (1980). These results are

obtained using the regression analysis framework developed in

Parzen (1979). When viewed in a regression setting, so called suboptimal

spacings which, for instance, minimize the sum of the variances are seen

to be well motivated from the perspective of regression design as well as

for other reasons such as computational simplicity.

The asymptotic implication of several spacing selection criteria

are considered in Section 3. The regression framework from which these

results derive is presented in Section 2 where it is shown that the

problem of optimal spacing selection can be viewed as both an optimal

regression design problem and a variatle knot spline approximation

problem for splines of order 1. This fact permits the derivation of

the asymptotic results in Section 3. Finally, in Section 4, the results

of Section 3 are utilized to develop a general approach to a problem

of robust ABLUE construction.

I .. . .
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2. Regression design, spacing selection, and variable knot spline

approximation. The objective of this section is to show the equivalence

of three problems: the optimal spacing problem, the problem of regression

design in the presence of errors with Brownian bridge (or Brownian motion)

covariance structure, and the problem of finding the best L 2[0,1] approxi-

mation of a particular function by piecewise constants with free break-

points. First, however, a few preliminaries are required.

Now, and in subsequent discussions, it will be assumed that F is

absolutely continuous with associated density f0: F; (where: = means

"is defined as"). The quantile function corresponding to F0 is Q0 (u):=

-1F (u): - inf{xIF W > u} and the density-quantile function is defined0 x 0

as d0 (u): - f 0 (Q0 (u)), 0 < u < 1.

Parzeni (1979) has shown that for large N the problem of location

and/or scale parameter estimation can be considered as a continuous

parameter time series regression problem through use of the model

d0 (u)Q(u) = ld0(u) + ad0 )Q0(u) + a BB(u) , u E [0,1] , (2.1)

where aB = a/VI and B(-) is a Brownian bridge process, i.e., B(-) is a

zero mean normal process with covariance kernel

R(ul,u) = u -U 0 < u (2.2)

12 U 1  12  1- L2- (22

Consequently, under the regularity condition that both d0 and the

product of d0 and Q0 1 d 0 "Q0 ' are in the reproducing kernel Hilbert

space (RKHS) generated by R, the techniques developed by Parzen (1961a,

1961b) may be utilized to construct linear estimators of 1i and a which

are based on the entire set of N sample quantiles. Denote these estimators

2 -1
by U and a. Their corresponding variance-covariance matrix is a A ,where

B

A is the usual intrinsic accuracy matrix associated with the location and

scale parameter model (2. 1) .

..... .. .. L ...... . . .... ."- , ... -,, .... -- ... " -'""-" ",. . ..,,,' -, - .. ;., , . . .,
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The problem of optimal regression design selection for model (2.1)

is also, clearly, a problem of optimal quantile selection. It is, in

fact, the optimal spacing problem. To see this define the set of all

possible n-point designs for model (2.1) by

S{(U<U ... < I}<

n n 1 2 n

Given a particular design,U = {uI ,...,u n } e D the observation set

{d0(U1)Q(u d) ... ,d 0(un)Q(U n) may be utilized, as a result of model

(2.1), to construct estimators, i(U) and a(U), for ) and o through

the use of generalized least squares. Denote the variance-covariance

matrix of these estimators by a AU)- . It has been noted by Eubank (1981)
B

that 1.(U) and c(U) coincide with the ABLUE's for V and a based on the

2 -
spacing U and that a (U)-I coincides with their asymptotic variance-

I. 'B

covariance matrix. Since the ARE expression for simultaneous parameter

estimation given by Ogawa (1951) is

ARE~j(U),cY(U)) =IA(U)I/IAI

where 1-1 denotes the determinant function, it is now apparent that the

optimal spacing problem is identical with the .roblem of D-optimal design

selection for model (2.1). The criterion of minimizing the sum of the

estimators' variances is now recognized as A-optimal design selection

since

a 2trA(U)-1 =Var(v(U)) + Var(o(U)),
B

where tr denotes the matrix trace. Similarly, maximizing the sum of

the ARE's is equivalent to maximizing tr[A(U)M], where M-l:=diag(a 1 1 ,a 1 2 )

and ai, i=l, 2, denote the diagonal elements of A.

In the case of, for instance, D-optimal designs for model (2.1) it

suffices to maximize IA(U) I over U c D n . It should be noted that such a

design is also D-optimal for the regression model
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Yt 81d0(t + a2 d0( Q0 (t) + X(t), tE0,11, (2.3)

where X(.) is a Brownian bridge process. Similar remarks hold for other

optimality criteria and for the case of only one unknown parameter. Thus,

if p(a) is known an optimal spacing for estimating a(U) is also an optimal

design for the estimation of 8 2(8 1) when 8 1(8 2) is known.

The problem of optimal design (and hence optimal spacing)

selection may be analyzed using the RKHS approach developed by Sacks

and Ylvisaker (1966, 1968). Therefore, let H(R) denote the RKHS

generated by R in (2.2) with associated norm denoted by 'I. it

can be shown (c.f. Parzen (1979)) that

H(R) = {flf(0)=f(1)=0, f'EL 2[0,111

The inner pioduct of f,g E H(R) is

<f'g>R = flf'(x)g'(x)dx = <f',g'>L2 (2.4)
0

2where <-,.> 2 denotes the usual L [0,1] inner product. It now followsL

from the work of Sacks and Ylvisaker (1968) that the matrices A and A(U)
^t

associated with the estimators (11,U) and (u(U), c(U)) respectively,

are given by

2[d0Itf <dOdO"Q0>R (2.5)

A <dodoQ> I d0 Q01120R R

and

A(U) d 112  <R ,ud0.Q0>R (2.6)

A(U)~II a* 1L2: d Q > 2R ,-V R 0 0 R Uo 0 01 R

where RU denotes the H(R) orthogonal projector for the H(R) subspace

RU'- span(R(.,ui)J i C u}
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Equations (2.4) - (2.6) have important implications for the

optimal spacing problem. To illustrate this point consider the case

of location parameter estimation when a is assumed known. For a

particular spacing, U, since a2AMU-1 is the asymptotic variance-

covariance matrix of the ABLUE it follows that

AR~ u u) = Il doll112[ l -/lid o -11 olI2

lid 11-2[1 Id 112 _ l1d - R d 112]

as a result of the Pythagorean theorem. Thus, maximizing ARE(u(U))

with respect to U is equivalent to minimizing I Id0 -RUd 0j IS over all

U F D . However, from (2.4),n

ildo-R doII = Id;-(Rudo)'IJ12

0= O II%-% LI 2
L2

where RU is the L2 10,1] orthogonal projection 
operator for the (L2

subspace
3R(u,u i )

= span{ au i ui C U} . (2.7)

Reference to (2.2) verifies that R' consists of splines of order 1U

(piecewise constants)with knots or breakpoints at the elements of U.

Therefore, the optimal spacing problem is now seen to coincide with the

following variable knot spline approximation problem for d': find U*ED
0 n

such that

0ldo - 0dIL 2  =  inf ld'- R'd1IL 2 . (2.8)
UeD

n

To ascertain how problem (2.8) relates to the usual type of variable

knot piecewise constant approximation problem first note that for any

tkD the elements in R are orthogonal to the unit function, 1, in L 2[0,1].
U n

Thus, the set of all splines of order 1 with knots at U, SU, may be



written

S = spai{l} R.

As d E H(R) requires that d (0)=d (1)=0 it follows that d; - span fl),

as well. Therefore, d'-R'd' - SU (in L 2 ) and, consequently,R.d' is

the best L 20,1] approximation to d; from SU . Now,let TJ* be defined as

in (2.8) and let SU denote the L2 [0,1] orthogonal projector for SU.

Then d' satisfies

IId'-R!% d'!L2 = infIId ' -SUd' IL2 (2.9)
UEDn

Equation (2.9) has the consequence that, for location parameter

estimation, the optimal spacing problem is equivalent to finding the

best set of knots for piecewise constant approximation of d' in L2[0,1].
0

an analogous result holds for scale parameter estimation.

The preceding discussions are now summaried by way of the following

theorem.

Theorem 1. If d0 (d0 "Qo) is in H(R) then the following three problems

are equivalent:

(i) Optimal spacing selection for the ABLUE of L)(e) when a()

is known.

(ii) Minimum variance design selection for 5 (B ) when 2(8 ) is

known in model (2.3).

(iii) Optimal knot selection for the best L 2[0,1] approximation of

d,([dooQo]') by splines of order 1.

It is of interest to note the importance of Theorem 1 with regard

to problems (ii) and (iii). From a regression design perspective the

values of optimal spacings provided in references [1,3,4,5,10-14,17,18,25,28,29]

may now be viewed as optimal designs for a regression problem with regression

'.4 t
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function d0 (d0 -Q0 ) and Brownian bridge covariance structure (these are

also optimal designs for models having the Brownian motion covariance

kernel, min(s,t), if a design point at 1 is appended) whereas from an

approximation theory point of view they may be considered as optimal

knot locations for piecewise constant approximation of d;([d0.Q0 ]'). The

optimal spacing literature, therefore, provides a readily available

source for the optimal designs (in the context of model (2.3)) and optimal

knots which correspond to a rich set of functions. For this reason, it

should be of considerable value, for comparison or other purposes, when

alternative design or knot selection schemes are being considered.

3. Asymptotic results. In this section the asymptotic properties of

certain spacing selection schemes will be analyzed. It will be seen

that, in certain cases, it is possible to characterize the asymptotic

behaviour of spacing sequences with regards to various criteria for

measuring the size of A(U). In addition, spacing sequences that are

asymptotically optimal (in a sense to be defined) for the optimality

criteria IA(U)I, V(1j(U)) + V(a(U)) and ARE (i(U)) + ARE(a(U)) will be

provided. The elements of such sequences can be utilized to provide

an approximate, easily computed, solution to the problems of optimal

and suboptimal spacing selection.

For a nonnegative matrix B, let 1P(B) denote either JBI or trBM

where M is a specified nonnegative matrix. Then the performance of a

spacing sequence, {U } U e Dn, can be determined from a regret
n n-l n ni

point of view by examining the asymptotic behaviour of iP(A)-*(A(U ))

or *(A(U ) ) - *(A-I. A sequence satisfying
n

t
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lim[inf w(A(U)-I)- (A-I)][ (A(U )-I)- (A-I)]- = 1 (3.1)
n-o UED

n

is termed asymptotically tl-optimum whereas one satisfying

lim[,P(A) - sup 4(A(U))][p(A)-P(A(U )) 1 (3.2)
n-  UEDn

n

is said to be asymptotically W2-optimum (this terminology is due to Sacks

and Ylvisaker (1968)). When only one parameter is unknown both (3.1) and

(3.2) may be stated in terms of ARE's. If, for instance, only o is

unknown both (3.1) and (3.2) are equivalent to

limfl- sup ARE(uCo))1[I-ARE(i(U ))1- = 1 . (3.3)
UED n n

As in Eubank (1981), density functions will be utilized to generate

spacing sequences. Let k be a continuous density on [0,1] with associated

quantile function <. Then k, or equivalently K, defines a spacing sequence

whose n-th element is Un={<( 1 1 )}. This sequence is called
n n+1 n+1-

the regular sequence (RS) generated by k or K and this relationship is

indicated by {Un} is RS(K). Since K, or at least some of its values, must

be known in order to obtain the U most of the results which follow will be
n

stated in terms of < rather than k (to translate conditions on < to condi-

tions on k it is only necessary to employ the change of variable x = <(u)

and the relation K'(u) = I/k(ic(u))). In the context of knot (design)

selection, such k's are frequently termed knot density functions and K is

referred to as a knot quantile function.

Let W 22(a,b) denote the Sobolev space of functions on (a,b)

possessing a second distribution derivative in L 2[a,b] and define the

space (0,1) as the set ofall functions in W 22(a,b) if 0 < a < b < 1.
loc

The next theorem details the asymptotic behaviour of spacing sequences for

the trace and determinant criteria. The primary emphasis is upon spacings

generated by a knot or spacing quantile function. In particular, knot

density functions which generate asymptotically optimal spacing sequences

are provided.
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Theorem 2. Let K E C[O,l] be a knot quantile function with a bounded

piecewise continuous derivative K' having the property that the set of

all points where K' is zero or discontinuous has content zero and has

neither 0 or 1 as accumulation points. Using g to denote either dO or

2,2
d 0 "Q0 , it is assumed that gW 2o2(o,l)fH(R) and that for each functionlbc

there is a corresponding 6 > 0 and a monotone function h on I=(0,6]U [1-6,1]

which satisfies

h(x) > Ig"(x) I for all x e I, (3.4)

and

flh( x)) J2  , (x)3dx < . (3.5)
I

Under these hypotheses the following results hold.

(i) Let i(B) - trBM and define

t
(u): = (d0(u), (d0Q0)(u)). (3.6)

Then, if {U } is RS(W)

lim n {trAM - trA(U )M1 t(K (x) M () (x) 3dx. (3.7)n 12 0
IfdO0 and d0.Q0 are in C 2[0,1] OH(R) then the RS generated by the density

Ifdanar
k*(x) = [(x)tM /  { (3ds} (3.8)

is asymptotically *2-optimum. In addition, if M is positive, the RS

generated by the density

k*(x)= - (x) tA-1iMA-l (x)]i1/3 /{fl0 [(s)tA-IMA-I (s)]I1/3 ds} (3.9)

is asymptotically 1l-optimum.

(ii) Let f(B) = IBI. Then, if (U n  is RS(K)

2 1lr(K11 )t -1 3
lir n [Al{l-ARE i(U n),a(Un )} A[(x)) A- (K(x))]' (x) dx. (3.10)II 0

If both d and d0-Q0 are in c2[0lYH(R) then a RS which is asymptotically

i1 and *2 optimum is generated by the density

k*(x) [ 1(x) A-l lx)] / {![o(s)tA-l(s)] dsl (3.11)
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Proof. The asymptotic optimality of the sequences generated by (3.8),

(3.9), and (3.11) is an immediate consequence of results given in Sacks

and Ylvisaker (1968). To obtain (3.7) and (3.10) first note that under

the present assumptions the work of Pence and Smith (1981) (or Barrow and

Smith (1978) under stronger conditions on r) in conjunction with Theorem 1

has the consequence that

lim n11g-R U gl 1 __ [g"(,x))] K'(x) dx, (3.12)
nn n R t 0

where g has been utilized to denote either d or d0-Q Equation (3.12),

along with the technique utilized in proving Theorems 4.1 and 4.2 in Sacks

and Ylvisaker (1968), then gives the desired results.

Theorem 2 provides the necessary tools for analyzing the asymptotic

behaviour of the various spacing selection schemes. Using (3.11) in (3.10)

and the asymptotic optimality of the corresponding RS it follows that for

spacings obtained by maximizing Ogawa's ARE expression

lin n,2 IAI{l-sup ARE((U),a(U)) = 1--4l t-l,( 1 A2 1 wI/3l p 1 3  (3.13)
n UcD 0

n
This is to be compared to the approach of maximizing the sum of the ARE's

utilized by Hassanein (1977). In this latter case, using (3.7) and (3.8)

with M-1 = diag(fl d0 1 12, ld0.Q0 12) one obtains

2 (i1 d"(x) \2 ((d 2 0 () 1/33

lim n (trAM-sup trA(U) M} L ftJ 0 + .Q0)(3.14)
ntieUD n 11 JdjI) 1I dO ) OHR3.4

Finally, if the criteria is minimization of the sum of variances, as in

Hassanein (1969a, 1969b) and Eisenberger and Posner (1965), then from

(3.9) and Theorem 4.5 of Sacks and Ylvisaker (1968) with M I, the

..miting behaviour is given by

lim n2{inf trA(U) -trA -1l f [ x)tA2 ,xnl/3 d1 3  (3.15)
n4f teD 120

Thus, for symmetric distributions, where A is a diagonal matrix, spacings
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which are D-optimal or maximize ARE((U)) + ARE(a(U)) will have the same

asymptotic behaviour. However, the asymptotic properties of these

spacings will, in general, differ from that of spacings obtained by

minimizing the sum of the variances, even for symmetric distribution.

All three spacing selection schemes will behave similarly for distri-

butions such as the Cauchy where A is a constant multiple of the identity.

In fact, for the Cauchy distribution asymptotically optimal spacing

sequences for minimization of JA(U)l, V(.(U)) + v(a(U)), and ARE(i(U))

+ ARE(o(U)) are all generated by the same knot quantile function, i*(x)=x.

The density (3.11) was also derived for use in spacing selection by

Sarndal (1962) using variational methods and under more stringent conditions.

For an alternative approach see Eubank (1981).

4. Robust estimation. Chan and Rhodin (1980) have proposed a

technique which utilizes the ABLUE to accomplish the robust estimation

of the location parameter of a symmetric distribution. They assume that

the true underlying distribution is a member of the Tukey's lambda family

or is a normal, double exponential or Cauchy distribution (or, at least,

is well modelled by one or more of these laws). In addition, they assume

that F0 belongs to a known finite subset, L, of these families of distri-

butions. Let ARE(p (U)JG) denote the ARE corresponding to the spacing U

when estimation is to be accomplished under the assumption that the data

has the distribution G e L. Then, to estimate U, Chan and Rhodin take

as their guess for F0 any distribution F* e L which satisfies

min ARE(U(U(F*))G = max min ARE((F)) , (4.1)
GeL FcL GeL

where U(F) is an optimal spacing for the distribution F. This approach
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requires that the function ARE (u (U (F IG) must be tabulated for all pairwise

combinations of laws in L and for each value of n that is to be considered

(Chan and Rhodin provide tables for n = 2(1)5).

From the results in Section 2 it follows than the procedure utilized

by Chan and Rhodin (1980) is equivalent to: select an F* c L such that

max IldG-R d 12 = min max IdG-RU(F)dGII 2 
, (4.2)

GEL U(F*) G FeL GEL

where dG is the density-quantile function for GEL. This suggests the

following asymptotic approach to robust spacing selection. Under condi-

tions such as those in Theorem 3.1, define for each FeL the knot density

function

k F (x) = {dF(xl F2/3/flfd" (s)}2/3as (4.3)
F F 0

with corresponding knot quantile function denoted K F, If d 0 C2[0,I]

the density kF generates a sequence of asymptotically optimal (in the

sense of (3.3)) spacings, {U n(F)}, for location parameter estimation when

F is the true parent distribution of the data (c.f. Eubank (1981)).

Then, from (3.12)

Ild-R d 2 = 1 [d"(KF(X))]1 ' C(x) 3 dx + o(n-2). (4.4)
GU(F) G~IRi 7 L G2 F Fn

Hence, an asymptotic version of (4.1) is: select F* e L so that

2 3 12 3
max f [dig([cF(x))]K' q(X) 3dx = min max j[d"(K Cx))2 ic'(Wx3 dx. (4.5)
GEL 0 G FEL GEL 0 G F

To determine F* for a given L one must evaluate (usually by numerical
1 2 3

techniques) the function f[d"(F(x))] F i'(x) dx for all pairwise combina-
0

tions of laws in L. However, in contrast to the procedure suggested by

Chan and Rhodin, the resulting tabulation suffices for all values of

-mom
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n. An estimator of . based on n quantiles is then provided through use

of the spacing U n(F*) and the corresponding coefficients for F* that

may be obtained from Ogawa (1951).

The solution (4.5) is applicable to any (finite) set of laws L,

whether symmetric or not, provided conditions such as those in Theorem 2

are satisfied by the elements of L. A scale parameter version of (4.5)

can be obtained by using d-Q rather than d, in (4.3) and (4.5). For

the simultaneous estimation of u and a either (3.6) and (3.8) or (3.10)

and (3.11) can be utilized to construct an analogous criterion for

robust spacing selection.
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